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The General Solution of the Binding Mean Spherical 
Approximation for Pairing Ions 

L. B l u m  I and O.  Bernard 2 
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The mean spherical approximation (MSA) for an arbitrary mixture of charged 
hard spheres with saturating bonds is solved in the Wertheim formalism. Only 
pairs are allowed. It is shown that the general solution is given in terms of two 
scaling parameters and the set of binding fractions. One of the scales is the 
screening parameter, and the other is a coupling parameter analogous to that 
of the simple MSA, but that now is found solving a cubic equation. Therefore 
the full solution requires solving m + 2 nonlinear algebraic equations for a 
system with in components. A brief discussion of the thermodynamics is given. 

KEY WORDS: Ionic mixtures; mean spherical approximation; dimerizing 
ions. 

1. I N T R O D U C T I O N  

The mean spherical approximation (MSA) ~-3~ is an analytical theory for 
the primitive model of ionic solutions as well as for models with molecular 
solvents. ~4-~) Some of the remarkable properties of the MSA are the fact 
that for electrolytes the mathematical  solution is expressed in terms of 
a single screening parameter  F, which plays a role similar to the well 
known Debye-H~ckel  (DH)  screening parameter  x n .  However, as has 
been recently shown, the MSA is asymptot ical ly  correct in the limit of high 
density and infinite charge, ~12'13) where, unlike the D H  theory, it satisfies 
the exact Onsager  bounds  ~ 14) for the Helmholtz free energy and the internal 
energy of the system. These limits are of course satisfied by the hypernetted 
chain theory (HNC)  ttS~ and its improved versions. The internal  energy of 
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the MSA is an axact lower bound for extreme high densities and charges, 
and is as accurate as the HNC and its modifications in these limits. 
This has been shown explicitly by Rosenfeld tl6"171 for extremely dense one- 
component plasmas, where the MSA agrees with much more costly HNC 
calculations. 

The MSA is inaccurate for dilute systems in the region near the 
repulsive core of the ions, such as the high-charge dilute ionic solutions. To 
remedy this problem, an approximation that works remarkably well is to 
use a closure (the "soft"-MSA, SMSA t18~) that interpolates between the 
MSA closure for large distances and the Percus-Yevick (PY) closure for 
the small distances. Analytical schemes such as the "generalized" MSA use 
a nonzero direct correlation function outside of the core given by an 
exponential form, with free parameters that are determined by some con- 
sistency criteria t~9,2~ or by a variational form such as the SMSA mentioned 
above. 

One simple and very popular way to correct these problems was 
proposed by Bjerrum, ~2]~ who developed the theory of ionic association in 
conjunction with the DH theory. The ionic association in electrolytes 
occurs in two different ways: 

1. By "electrostatic" association, in which the clustering process is 
due to strong Coulomb interactions. 

2. By the "chemical" association mechanism, in which there is a true 
chemical bond formed. 

In the hypernetted chain equation the nonlinear effects produce very 
high contact probabilities for oppositely charged ion pairs. Therefore one 
expects that the HNC will account for the electrostatic association 
mechanism (1). But, as it has been recently shown, it does not do a very 
good job here, and alternative schemes have to be used.  t22-24) 

In the MSA this has been done combining the concept of ionic 
association with the calculation of thermodynamic properties in various 
ways: By simply correcting the ionic concentration, that is, using the 
effective ionic concentrations obtained from the law of mass action, t25'26) 
excellent fitting to the properties of real ionic solutions is obtained. In 
ref. 25 only the electrostatic association is discussed, while in ref. 26, the 
association parameter includes both electrostatic and chemical association. 
This method, however, does not give structural correlation functions. 
A better approach is that of the physical clusters, t27-291 

A statistical mechanical approach to pairing is that of Stell and co- 
workers, c3~ in which the association is represented by Baxter's sticky 
potential inside the hard core. The general ionic mixture with arbitrary 
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surface sticky interactions has been solved in the M S A ,  (33"34) and it has 
been shown that the excess functions due to the charges are  all  (33"35) given 
in terms of the scaling parameter F r, which now depends on the degree of 
association determined by the sticky potential. 

The proper Ornstein-Zernike (OZ) equation which accounts for 
saturation effects was constructed by Wertheim. (36"37) This formalism can 
accommodate both mechanisms in one single association parameter. The 
association causes saturation effects in which only one bond is allowed 
between the ions and the formalism has to be changed at the level of the 
Ornstein-Zernike equation in a special way. The treatment now includes 
the fraction of sites that are bonded, and that fraction is obtained by 
imposing chemical equilibrium-type mass action laws. The Wertheim for- 
malism is the proper way of incorporating the mass action law into the 
statistical mechanical treatment of ionic mixtures. 

This formalism was shown to be very successful for ionic systems in 
the HNC approximation. 122-24) More recently the Wertheim formalism 
was used to study numerically the binding effect for the restricted MSA ~38) 
applied to a symmetric 2-2 equal-size electrolyte, with excellent results for 
the thermodynamic functions. 

In this paper we obtain the full and general solution of the binding 
MSA (BIMSA) for the arbitrary mixture of pairing ions. It is given in 
terms of a scaling parameter F e, just as in the solution of the general 
MSA 141 for charged hard spheres. For sticky hard spheres the MSA 
solution still depends on  FT, t33) a single (but different) parameter. The 
remarkable simplicity of the MSA thermodynamics persists for the sticky 
case, even though no explicit solutions are obtained until the matrix of the 
sticky interactions is set. 

The situation in the BIMSA is not quite the same: In a way it is simpler 
than the sticky MSA since an explicit solution can be obtained for the 
general mixture with an arbitrary matrix of the sticky interactions. This 
solution is given in terms of the screening parameter F s, and the cross 
scaling parameter qn, which was discussed in previous work 139) on the 
scaling properties of the MSA. In the hard-core MSA, r/is obtained simply 
from F. In the present case, ~/s has to be calculated by solving a cubic equa- 
tion, with coefficients that depend on F s and the degrees of association, 
which are given by m (= the  number of components) quadratic equations. 
In other words] for a mixture with m species, we need to solve a system of 
m + 2 nonlinear algebraic equations. The theory and the analytical solution 
are presented in Section 2. 

Expressions for the excess thermodynamics are given in Section 3. 
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2. T H E O R Y  

The Wertheim theory was initially formulated for sticky adsorption 
points. The extension to isotropic bonding with saturation effects was 
carried out by Yakub (4~ and by Kalyuzhnyi and Stell. ~*l~ We consider a 
system with an arbitrary number of components 0 ~< i ~< m, with number 
density p;, charge ezi, (e is the elementary charge), and hard-core diameter 
ai. The solvent is a continuum with dielectric constant %. 

The temperature of the system is T, Boltzmann's constant is ks, and 
we use fl = I/ks T throughout. Our system is electroneutral 

~'~PkZk=O (1) 
k 

We define the matrices hg and c,j, which correspond to the pair indirect 
and direct correlation functions: 

h,7= h~ ~ u 
( l l )  ~ h,, J (2) 

[- ~(oo) COl ) cu ] 
% = / ~u ( 3 )  

% J 

The density in the Wertheim-Ornstein-Zernike equation (WOZ) is 
defined as 

p , =  plO) (4) 

In Wertheim's theory the density of i is split into "bonded," - ~  and "not- P i  , 

bonded," ~o) parts, which correspond to the associated and nonassociated P i  , 

ions. We have the relation for the total or initial density of species i 

(0)  ( I )  p i=p i  + p i  (5) 

It will be convenient to use also the degree of dissociation 

Then 

Pi=pi 

p!O) I ~, = ( 6 )  
Pi 
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The "normal" pair correlation function therefore is 

hij(r) =h~O)(r) + ~;hi j(lo) (r) + oLjh u(~ (r) -bcxiocjh~l)(r) (8) 

The WOZ is 

h/j(r) = e,7(r) - ~ P k  f dr] eik ( [rl -- rl) ~kh~v-(rl) (9) 
k 

where r is the position. 
If we restrict ourselves to only the pairing case, then the BIMSA 

boundary conditions are 

e•(r)= fle---Z zL~i[ 1 00] 
eo r L 0 ' r>~r~ (10) 

where a; j=(1/2)(a , .+aj)  is the distance of closest approach of the ions i 
andj. 

Consider the sticky interactions st . uij 0)  for the pair •, 

exp[ - flu~! (r)] = ~o.6( r - a ~ ) (11 ) 

where ~0 is the matrix of the sticky interactions, which are given. Then, the 
Mayer function 

f0 = exp[ - - f l u ~ t  ( r ) ]  = - -  1 + ~ijr(r -- a~ ) (12) 

and the fraction of nonbound ions i, 0Ci, (36-38) is 

E 200 ; l=~i  l + ~pj~j4rcaug U(aU) N O. (13) 
J 

In our solution, and to make contact with earlier work, 133"35~ we will use 
the parameter t o, 

00 to = 2~a,7 gu (~r0) ~u (14) 

With this parameter Eq. (13) reads 

1 =cr 1 +~pjo92r 1 .  (15) 
J 

For the pair correlation function matrix we get the boundary condition 
in this notation 

h ~  - 1  0 1 0 (to./2rtau)6(r-a~) ' r<~a~ (16) 
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where t~ is the sticky parameter  for the association of the ions i and j 
defined by Eq. (14). 

We use now the extension of the Baxter-Wertheim 142'43~ factorization 
method to charged systems, c4) We define the projections J~j and Sij 

= 2~ ; ; '  ds sh,y(s) (17) Jo-(r) 

= 2n I~' ds s%(s) (18) S0-(r) 

F rom the boundary conditions (10), (16) we get 

O0 (01)  
[n"~-+J,~ Jij ] "<<.aii (19) J/fir) = / j~]o) 

-0  ]~"J'  

Be: 
- Oo] zjzie 

S~(r) = - ~im r > a/j (20) 
e0 - # 0 ' 

We need to solve the set of coupled equations, as in previous work, 

. ~o . ( r )_S 'p ,  [ dr I ~ik(r, ~ r . S, / r )  = ~ j ) ~ ~j~-(I I -- r) (21) 
k 

J0.(r) = -~,y(r) -- ~ Pk f drl Jig-( IrK - rl) 0h.~,/r,) (22) 
k 

The factor correlation functions .~o.(r) are unknown. 
From the analysis of the singularities of the problem ~4'33) we see that 

this function must be of the form 

2~/j(r) ~ [Qij(r)  + t/j] O ( c r i j - r ) - z i a j e  -m,  ~.ji<r (23) 

where we used the definition 

2ji = �89 - a;) (24) 

Performing the integrals in Eq. (21), we see that in the limit # = 0  both 
sides have a simple pole. The residues of this pole must be equal, and 
therefore 

4ni le  2 [1 00] P*ag'oLkak (25) 
~o : j : ,  0 = z j : i  ~ ^ 

k 
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From here we see that the only form compatible with this is 

a j=  o (26) 0 

and we require 

4n i l  e2 Z Pk[(a~ 2 o , - - =  + 2akc%ak] (27) 
~~ k =  1 

This is one of the important boundary conditions. 
Similarly, from the discontinuity at r = a U in Eq. (21)  we need 

t ~ = [ ~  t0ol (28) 

It is also clear from Eq. (17) and (22) that Q,j(r) must be a polyno- 
mial of second degree, which is zero for r =  a0.. For convenience we write 

Q0.(r) = (1/2) A;j(r - ao.)(r - 2j~) + flo.(r - ao.) (29) 

where the coefficients are matrices 

[- .4 too~ 
A . . = / - - ~ Y  
--,J /.4~ol 

L - - / j  

and 
[- /~(00) 

(01) 
A ~  ] (30) 

(11) 
A o. ] 

p,o~q 
u ! 

B~,,)l (31) 
i - ly  J 

We remark some of the properties of this function: 

Q0-(a0.) = 0 (32) 

O~.(a0.) = (1/2) ajAu + fla (33) 

This quantity yields the contact probability, needed to calculate the 
closure of the Wertheim theory, Eq. (14). In fact, from Eq. (22) we get the 
important relation 

27r~#gij(a~/) = (1/2) aiAj  + flo + Y', PkOCk tik[ -- akflkj -- Zk a i + tkj ] (34) 
k 
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Furthermore, we need 

Q~.(~J2) = fl0" 

Q'.(O) = --(I/2) erdA. + ft. 

Q~ (cro') = A,7 

We also need the moments of Qi / r )  defined by 

f2' r __ ,n  . Kkj - drl ~ t Q~j(~ ~ + 2j,) 

We get, using Eq. (29), 

K~.j --(1/12) 3 2 = O'kAkj -- (1/2) O ' / . f l k  j 

A useful relation is 

I G - (~k/2)  ~ j - ~  _ i 1/12) L j ~ 2  

We take now the first derivative of Eq. (22) at r = a J 2 :  

= L - ~ E P,Ok~kLj + E P , : ,  J ,k~ ~j 
k k 

From the second derivative of Eq. (22) we get 

[20 00] = A u - r t  ~pk~k](a~/6)A~+a~.fl .] 
k 

+ 2zt ~ pk~ktl, j - -  2re ~ pkZkakaj 
k k 

The solution of Eq. (41) yields 

G o _  1 o  ,, , --  B ,  a j ,  f l o  ~ B )  a j  

floo '~o~ =_~_+Mm_O ol .-ol l 
i t l j  .~ f l i j  ~" 1V1 i aj 

With these results we obtain from Eq. (42) 

I 1 ~  0 A) ~ = O, A.i 

Am - 2n II lr/n 
d r/ +a )  

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41 

(42) 

(43) 

(44) 

(45) 

(46) 
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Here we have used the following notation(4"33): 

C,, = Y' pkO'~ 
k 

A = 1 - ~C3/6 

X,_=F.p,z:~. 
k 

o( ~ ' ~  _ _ v j a O  8; =Z.,/'k-kL :- + ~ k J ; ' ] ,  
k 

Here 

c~=0, 1 

577 

(47) 

(48) 

(49) 

(50) 

ST=B~ (51) 

corresponds to the total electrostatic interaction parameter Bj  of  previous 
work. (4"33) Furthermore,  we have used 

z~ " 3 T Uf =Sf +g-j P:,~, +~-jX2 (52) 

We have also 

7t ~ _  o.3B ~ rc N~.=B~.+~ , Pk k k+-~X2, 0c=0,1  (53) 

MOl _ o zr 

k 

r)l=2pkakO~kt)~ (55) 
k 

and 

qs=~pka,[ak(MO~ +~,B~) +z,] =--~p,ak[a ,N,  +z,] (56) 
. 2 A  k 

K 

We remark that 

MOl r l = N: -ogB ) (57) 

Before turntng to the calculation of  the coefficients a j, we examine 
again Eq. (21). From the symmetry requirement 

c ~ = c, 7 (58) 

we get 
a u ( ~ : , . )  = r .~j~ (2o.) (59) 
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Using Eqs. (23) and (29), we obtain 

/~oo~,+_ o _  oo ~,a) - [3); rrj + z/t  ~ (60) 

p ~  ' t~l% -;a) = i-ji j (61) 

fl~.l cr;= fl);l aj (62) 

and from Eq. (44) we have 

[X ~ a ~  [X  ~ a ~ (63) 

[X  ~ ] a) = ajB) a ~ (64) 

aiBJa) =ajB)a] (65) 

where we have used the notation 

X ~ = t r i M  ~ q-z  i (66) 

These three relations are simultaneously satisfied by a single scaling 
parameter F s, which gives 

o 2Fn xOl 
a i =-~-~-[ i ] (67) 

2Fn I 
l = - - 6 i B  i (68) 

ai O,, 

where Do is just a constant for the time being, which will be defined below 
Eq. (72). 

We turn now again to Eq. (21). Taking the first derivative, and since 
the direct correlation function must be finite at the origin, we get t4'33~ 

- - 2 Q . ( O ) = ~ p k [ Q i k ( 2 k , )  z i a k + t i k ]  ~ r _ r ' -- ~k[Qik(2ki) -- - ia ,  + tik] 
k 

(69) 

Using Eq. (29) and (36), .together with the above results, we find, after 
some long but straightforward algebra, 

1 
a ~ =~-~,, [ - 2 M  ~ _ 2a,q n ] 

'E ] a] = K  -2B]  + 2 y. pkOq.X~ 
k 

(70) 

(71) 
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where now 

D. = Z pk(ak N / +  Zk) 2 - -Z  Pk[ Or 2 
k k 

a n d N / i s  defined by Eq.(52). 

(72) 

Consider now Eqs. (70) and (67): We get the system of equations 

B 01 ~ OI F X a - - M  i - - a i t l  B (73) 

As in our previous work, c4'331 this system has the solution 

B "~ 
XO I _ zi - rl a7 

1 + Ft~ai (74) 

and 

M o, _ Fnzi  + tlsai 
1 + I~Bo'i (75) 

where t/n is given by Eq. (56), 

tl =-~--~ ~ p k a k  X~ + ~'pkakO~kB ~ (76) 
L k k 

Direct substitution into Eq. (68) will lead to B], 

= 

1 + FSai  
(77) 

With these results and using the boundary condition (27) and the 
scaling relations, Eqs. (67) and (68) lead to 

[ ' F B ]  2 - - r ~  Z P k [ (  X ~ 1 7 6  
'~0 k 

(78) 

which now becomes 

B 2 
~k Zk -- ~1 ak [ r B ]  = pk 

eo . (1 + F n a k )  2 

X [ (2 k --  qBO'2) + 2akO~ k Z 
I 

P:~ + Feal  tlk I (79) 
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We observe also that  f rom Eqs. (34), (44), and (46) we get the contact  
probabil i ty 

? 

O0 - -  HardSpherc ( 8 0 )  2ztaijgo. (a o) -2naijgo. (go.)-2n fie X~176 
~o 

The final step in the solution is to obtain an equat ion for r/s. Let us now 
turn to Eq. (14): Using the above equation, we get 

- Hs - 2rt fie2 X~176  (81) 
tij - -  tij -- i - - j  ~ i j  

80 

where 

Hs 2n zt 
t~ = ~ - ~  [ ao. + (zaiaj ~ ] (82) 

Now from Eqs. (76) and (77) we get 

"PkakOLk V - 

(83) 

We now substitute the expression for X ~ Eq. (74). We get after some 
lengthy algebra the cubic equat ion 

(r/S) 3 As + (qs)2 Bs + qsCs + Ds = 0 (84) 

where 

As = -2~r fie--'-- T(c~., a4), Bs  = 6n fie2 T(a 4, a~zt) 
~0 ~0 

f i e  2 , 2T(a4, , Cs=l+E2,+S~,ns-2rt--E3T(aT, Zk, a~zt)+ z~')] 
80 

f l  e2 ~ ,  2 ~x 
DB = -P,,  + S ~n s - 2~ - -  ~takz k, 87) 

~0 

where we define the sums 

n pkO'kZk  

P n = ' ~  ~ k 1 -~ I"a k 

n pk~r~ 

t'2,,=-~-~ ~ 1 -F Fak 

SHs _~_~__ pkCtkak ptcttbl tns 
1 k " '  ak, bk=a~,Zk 

(85) 

(86) 

(87) 

(88) 



Binding MSA for Pairing Ions 581 

and 

r~ ~ pkcckak plalbt ~kl (89) 
T(ak, bt) = ~-~ ( 1 + Fak) z ( 1 + Fal) 2 

This completes the analytical solution of the WOZ for the binding 
mean spherical approximation. For an m-component system we need to 
solve the system of equations formed by Eq. (15) from which we get the 
parameters ~k. With these parameters we will compute r/s and F s solving 
the two equations (79) and (84), Our equations agree with the previous 
solution of Holovko and Kalyuzhnyi ~38~ for the restricted case up to the 
point where they obtained explicit results. 

Thermodynamic Properties 
The standard expression for the excess energy per unit volume is (4) 

f? AE Msa = (1/2) }-' PiP1 dr u~(r) gu(r) 4rcr 2 (90) 
U 

where uu(r) is the electrostatic interaction potential and go(r) is the total 
radial distribution function. After some calculations t4'*~ we get 

e e2 -ee2~Pizi[M~ (91) fl AE Msg = ~ P'z 'NT = 

Using Eqs. (75) and (77) of the last section, we get 

eZ [ Piz~ F s  s 2A 
pAEMSA = --T , ~p; L 1T-F-'~ai " ~  T[Pn--S((~2'Zl)'] ] + - -  S(zk, zl) 

7~ 
(92) 

where 

z~ S" pk~kak _Pl~lbl tk.i (93) S(ak, bl) 
=-2-A ~ 1 + Fa k 1 + Fa l 

To evaluate the excess free energy, we take the thermodynamic 
relation ~33~ 

63 
(fl zJA MsA) = A E  Msa (94)  

where AA MsA is the excess free energy. Integrating by parts this equation, 
we have (44'33) 

, C 3 A E M S  A fl AA usa = AE usa - jo B dF' fl ~ (95) 

822/79/3~-6 
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Unfortunately, the simplifying relation 

MSA ~fl ~---p---~ zlE = [FS]  2 (96) 

is not satisfied here, and therefore the entropy is of the form 

AS MsA = - k  [Fn]3  + sticky term (97) 
3~z 

We hope to come back to this point in the future. 
The excess osmotic coefficient ~o MsA is obtained as before from the 

thermodynamic relation ~33) 

0 [aA MsA] 
(98) 

where Co is given by Eq. (47). Finally, we get the activity coefficient from 
the thermodynamic formula 

A A  MSA 
A In y:~ = f l  C0 + A~0 MSA (99)  
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